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Abstract

The human umbilical cord (UC) is an attractive source of mesenchymal stem cells (MSCs)

with unique advantages over other MSC sources. They have been isolated from different

compartments of the UC but there has been no rigorous comparison to identify the compart-

ment with the best clinical utility. We compared the histology, fresh and cultured cell numbers,

morphology, proliferation, viability, stemness characteristics and differentiation potential of

cells from the amnion (AM), subamnion (SA), perivascular (PV), Wharton’s jelly (WJ) and

mixed cord (MC) of five UCs. TheWJ occupied the largest area in the UC from which 4.61 ±

0.57 x 106 /cm fresh cells could be isolated without culture compared to AM, SA, PV and MC

that required culture. TheWJ and PV had significantly lesser CD40+ non-stem cell contami-

nants (26-27%) compared to SA, AM and MC (51-70%). Cells from all compartments were

proliferative, expressed the typical MSC-CD, HLA, and ESCmarkers, telomerase, had nor-

mal karyotypes and differentiated into adipocyte, chondrocyte and osteocyte lineages. The

cells fromWJ showed significantly greater CD24+ and CD108+ numbers and fluorescence

intensities that discriminate between MSCs and non-stem cell mesenchymal cells, were neg-

ative for the fibroblast-specific and activating-proteins (FSP, FAP) and showed greater osteo-

genic and chondrogenic differentiation potential compared to AM, SA, PV and MC. Cells

from theWJ offer the best clinical utility as (i) they have less non-stem cell contaminants (ii)

can be generated in large numbers with minimal culture avoiding changes in phenotype, (iii)

their derivation is quick and easy to standardize, (iv) they are rich in stemness characteristics

and (v) have high differentiation potential. Our results show that when isolating MSCs from

the UC, theWJ should be the preferred compartment, and a standardized method of deriva-

tion must be used so as to make meaningful comparisons of data between research groups.
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Introduction

Mesenchymal stem cells have been derived from various sources. However, those of fetal origin

face ethical issues as they are isolated from human abortuses while MSCs from adult bone mar-

row and organs have the disadvantages of painful invasive harvest, limited cell numbers, di-

minishing stemness properties with age and short-lived stemness properties in vitro [1,2].

These disadvantages have prompted interest in the exploration of other sources. Recently,

primitive MSCs have been derived from various compartments of the human umbilical cord

(UC) [3–8] and appear to be an attractive substitute.

The progressive expansion of the amniotic cavity between the 4th and 8th week of human

embryonic development results in the formation of the tubular UC covered with the amniotic

membrane and containing within it the yolk sac and allantois. Regression of the allantois and

yolk sac occurs between the 6th and 8th weeks of gestation in the human. At term, the UC has

an average length of 50–60 cm, mean diameter of 14.42 ± 1.50 mm and approximate weight of

about 40g [9]. It contains two umbilical arteries and one umbilical vein embedded in the pro-

teoglycan-rich gelatinous Wharton’s jelly (WJ) and surrounded by a single layer of amnion.

Several groups have categorized the human UC into various compartments such as (i) the am-

niotic epithelial membrane (AM) (ii) subamnion or ‘cord lining’ (SA) (iii) intervascular Whar-

ton’s jelly (WJ) and (iv) perivascular region (PV) surrounding the umbilical blood vessels

[5,10].

MSCs have been isolated from each of these compartments by different authors [3–8]. At

least six different methods of MSC derivation from these various compartments have been re-

ported. Briefly, these methods include (i) cutting open tubular UC pieces, stripping out the um-

bilical blood vessels and scraping off or squeezing out the WJ with forceps from which stem

cells are harvested [11,12], (ii) separation of the WJ without removing the umbilical blood ves-

sels [13–17], (iii) culturing entire cord pieces with intact umbilical vessels as explants for a few

days after which the cell outgrowths from the explants are separated and cultured as UC-MSCs

(mixed cord, MC) [6,18–19], (iv) separation of the subamnion region (cord lining) with a razor

blade, cutting it into small pieces and growing the pieces as explants from which the cell out-

growths are separated and cultured [7,20], (v) removal of the umbilical blood vessels, tying

them at either end into loops and then placing the loops into an enzymatic solution to allow de-

tachment of cells from the perivascular region which are then grown in culture [3] and (vi) cut-

ting open cord pieces and placing the outer surface face down into an enzymatic solution to

allow only the amniotic membrane cells to detach and then grow in culture [4,21–22].

The phenotypic profiles of the MSCs derived from these various compartments seem to be

inconsistent across studies. Some authors have reported that the perivascular stem cells were

positive for CD14, CD106 and CD117 [3,23–24] while others reported that they were negative

[25]. Cord lining or subamnion MSCs were shown to be positive for CD34, CD45 and SOX2 in

one study [26] and negative in another [27]. Similarly, the MSCs isolated from cultured whole

UC pieces (MC) were shown to be positive for CD106 and CD117 in one report [28] and nega-

tive in another [29]. It has been reported that there is a differential distribution pattern of the

various cytoskeletal proteins of stromal cells and extracellular matrix proteins in different

zones of the SA, WJ and adventitia of the umbilical blood vessels [30]. Differences in differenti-

ation potential have also been shown between stem cells of different compartments of the UC

[31] and it was reported that a plethora of cellular sub-sources and populations can be derived

from the human UC [32]. As such, some authors have suggested that the different regions of

the cord be considered individually because the UC harbours a variety of embryonic or prema-

ture cell populations such as MSCs, endothelial stem/progenitor cells (EPCs, ECFCs) and

HSCs (CD34 + and CD133+) [33].
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In many publications authors do not describe precisely the exact compartment of the UC

from which they derive their stem cells but simply use the terminology ‘human umbilical cord

mesenchymal stem cells (UC-MSC)’ thus making comparison of results between groups inef-

fective with no standardization. Since umbilical cord MSCs are starting to reach the clinic, it is

an urgent necessity to find out through rigorous comparative characterization whether differ-

ences exist between stem cell populations of the various compartments of the UC and identify

which compartment generates the most clinically utilizable MSCs to allow global standardiza-

tion of terminology and derivation methods so as to make comparison of data meaningful. We

therefore undertook a rigorous study to comparatively evaluate the cell numbers, proliferation,

viability, stemness properties and degree of differentiation potential of MSC populations be-

tween AM, SA, PV, WJ and MC to identify the compartment with the best clinical utility.

Materials and Methods

In situ histology of cross-sections of human umbilical cords

Written informed patient consent was received from the patients themselves and ethical ap-

proval was obtained from the Institutional Domain Specific Review Board (DSRB), Ministry of

Health, Singapore to study the microanatomy and derive stem cell populations from human

umbilical cords. Pieces (1–2 cm) of whole umbilical cords were fixed in 10% neutral buffered

formalin (Sigma) for 24 h at room temperature and later embedded in paraffin. Cross-sections

from the UC pieces were cut at 5 μm thickness using a Microtome (Leika, Wetzlar, Germany)

and mounted on Superfrost Plus slides (Thermo Scientific, Waltham, MA, USA). The cross-

sections were stained with Hematoxylin and Eosin (Sigma, MO) and photographed under

bright field optics. A total of 10 cross-sectional areas per UC of the different regions were mea-

sured and compared in 5 different UCs. Detailed histology was studied at high magnification.

Fresh live cell counts

The in situ cross-sections showed individual cells lying in the gelatinous matrix of the WJ while

the cells of the other compartments (SA, AM, PV) were tightly held together by extracellular

matrix (ECM) that required enzymatic digestion and primary cultures to harvest individual

cells. As such, fresh live cell counts without culture could not be made for the SA and AM com-

partments. The fresh gelatinous WJ however was gently separated by aspiration with a syringe

and 20G needle from cut-open 2 cm tubular pieces of UC, collected into tubes and mixed with

equal volumes of culture medium comprised of DMEM-low glucose, fetal bovine serum (FBS)

and antibiotic-antimycotic solution (Invitrogen Life Technologies, Carlsbad, CA). The WJ was

resuspended in the medium by gentle pipetting and then centrifuged at 300 x g for 10 min.

The supernatant was decanted and the cell pellet containing fresh Wharton’s jelly stem cells

(hWJSCs) stained with 0.4%Trypan blue (vital dye) (Sigma Chemical Co, MO) for 1 min at

room temperature. The number of live cells (unstained) was counted using a hemocytometer

from 5 UCs and expressed as number of cells per cm of UC.

Cell counts after culture

Each UC was cut into 5 equal pieces and cells isolated from each piece for the five compart-

ments (AM, SA, WJ, PV and MC) using published established derivation protocols for each

compartment [3–7,15,18]. The cells from the individual compartments were separately seeded

into 100 mm tissue culture Petri dishes (BD, Franklin Lakes, NJ, USA) and grown in the same

volumes of culture medium (DMEM-low glucose supplemented with L-glutamine, antibiotic-

antimycotic solution). The Petri dishes were incubated at 37C in a 5% CO2 in air atmosphere
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until confluent primary cultures were established. The cells from all dishes were then disassoci-

ated with trypsin (TrypLE Express, Invitrogen Life Technologies, Carlsbad, CA) and the trypsi-

nized cells then washed with similar volumes of medium. The washed cell pellets were seeded

into fresh dishes and passaged to confluence. Serial passaging was carried out until the 10th pas-

sage. Cell counts from individual compartments of five different UCs were determined in pri-

mary culture and cell morphology, proliferation and viability rates determined at the 3rd, 5th

and 10th passages.

Cell morphology

The morphological changes during culture (primary and passages) were monitored and photo-

graphed using inverted phase contrast optics (Nikon Instruments, Tokyo, Japan).

Cell proliferation

The cell proliferation rates were carried out using a BrdU cell proliferation assay kit (Cell Sig-

naling, Massachusetts, USA) according to the manufacturer’s instructions. Briefly, the cells

were incubated for 30 min with the BrdU solution (10μM) followed by replacement of the solu-

tion with fixing/denaturing solution and further incubation for another 30 min. The cells were

then incubated for 1 h with BrdU detection antibody solution followed by three washes with

the wash buffer. The HRP-conjugate solution was then added to the cells and incubation car-

ried out for 30 min followed by similar washing steps and further incubation with the substrate

solution for 30 min. The enzymatic reaction was finally stopped and quantified by measuring

the absorbance at 450nm using a microplate ELISA reader (μQuant-BioTek, Winooski, VT).

Cell viability

The cell viability assay was performed using MTT reagent kit [3-(4, 5-dimethylthiazolyl-2)-2,

5-diphenyltetrazolium bromide] (Sigma) according to the manufacturer’s instructions. Briefly,

10 μl MTT reagent (final concentration of 0.5 mg/ml) was added into each well and the culture

dishes incubated for 4 h until a purple precipitate was visible. The supernatant was then aspi-

rated and 100 μl of the detergent reagent from the kit was added to each well and dishes incu-

bated in the dark for 2 h. Absorbance at 570 nm was spectrophotometrically measured using a

microplate ELISA reader (μQuant-BioTek, Winooski, VT) with a reference wavelength of

630 nm.

CDmarker analysis

Briefly, cell monolayers derived from each compartment of the UC were dissociated using

trypsin (TrypLE Express, Invitrogen) for 3–5 min. The cells were then washed in phosphate

buffered saline without calcium and magnesium (PBS (-)) and then blocked with 10% normal

goat serum (NGS) (Invitrogen) to prevent non-specific binding. The cells were then incubated

with mouse monoclonal primary antibodies for a series of CD markers viz., CD14, CD19,

CD24, CD29, CD34, CD40, CD44, CD45, CD49d, CD73, CD90, CD105, CD108, CD117,

CD140b, CD146, CD271, HLA-ABC and HLA.DR (1:100, Biolegend, San Diego, CA) for 30

min. This was followed by incubation with Alexa Fluor 488 (1:750) goat anti-mouse secondary

antibody (Invitrogen Life Technologies, Carlsbad, CA) for 30 min. The cells were finally

washed in PBS (-), re-suspended in 10% NGS and filtered using a 70 μm nylon strainer (BD

Bioscience) to remove any cell clumps and analyzed using a CyAn ADP Analyzer (Beckman

Coulter, Fullerton, CA).
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Telomerase analysis (TRAP assay)

The telomerase activity of the cells derived from each compartment of the UC was analyzed

using the TRAPEZE RT Kit (Chemicon, Millipore, Temecula, CA, USA) according to the man-

ufacturer’s protocols. Briefly, the cells were first lysed in CHAPS buffer on ice for 30 min and

the cell lysates then centrifuged at 12,000 x g for 20 min at 4°C. The supernatant was decanted

and the cell lysate analyzed for protein concentration. From each sample 800 ng of protein was

used for the TRAP assay. The positive control was TSR8 that came with the kit where telome-

rase activity was expressed as total-generated-product (TGP) unit. The logarithmic plot of the

TSR8 standard curve was plotted by net fluorescence against the corresponding TGP unit of

the positive control (TSR8). The TGP units of each sample were obtained from the standard

curve by using the relative net fluorescence increase as according to the kit procedure and a

RT-PCR-based Telomere Repeat Amplification Assay (TRAP) assay was carried out using a

qRT-PCR machine (Applied Biosystems).

Pluripotent marker analysis

The presence of ESC markers in the cells of each compartment was determined using immuno-

histochemistry (IHC) and immunocytochemistry (ICC). For IHC, histological sections (5 μm)

of UC pieces mounted on Superfrost Plus slides were used and for ICC, fixed cells from each

region of the UC were analyzed. The histological sections and fixed cells were washed twice

with PBS and blocked with 10% NGS for 20–30 min. The sections and cells were then incubat-

ed with rat primary monoclonal antibody SSEA-3 and mouse monoclonal primary antibodies

SSEA-4, Tra-1-60, Tra-1-81 (1:100, Millipore) overnight at 4°C. This was followed by incuba-

tion with goat anti-rat and goat anti-mouse secondary antibodies (Alexa Fluor, Invitrogen) for

1 h. The cells and sections were then washed with PBS and stained with 4'-6-diamidino-

2-phenylindole (DAPI; 0.5μg/ml) (Invitrogen) for 5 min at room temperature. Finally the sec-

tions and cells were washed once with PBS, examined and photographed using a confocal

microscope.

Genomic markers

The presence of pluripotent and fibroblast markers in the cells of each compartment was deter-

mined using the quantitative real time polymerase chain reaction (qRT-PCR). Total RNA from

the cells of each compartment of the UC was extracted using TRIzo reagent (Invitrogen) and

its quality and quantity measured using a Nanodrop spectrophotometer (Nanodrop technolo-

gies, Wilmington, DW). All RNA samples were treated with DNase-I prior to first strand

cDNA synthesis with random hexamers using the SuperScript first strand synthesis system

(Invitrogen). Primer sequences were taken from earlier published studies and are summarized

in Table 1. qRT-PCR analysis was performed with the ABI 7500 Fast Real-Time PCR System

(Applied Biosystems, Foster City, CA) using SYBR green as previously described [34] and rela-

tive quantification was performed using the comparative CT (2-ΔΔCT) method.

Cell differentiation

For adipocyte differentiation, cells from the various compartments were seeded into 6-well tis-

sue culture dishes with an initial seeding density of 10 x 104 cells/dish and incubated at 37°C in

a 5% CO2 atmosphere for 24 h to allow attachment and the medium was then changed to adi-

pogenic induction medium contain DMEM-Low glucose supplemented with 10% FBS, 1%

penicillin/streptomycin, 0.01 mg/ml insulin (Invitrogen), 1 μM dexamethasone, 0.5mM

3-isobutyl-1-methyl-xanthine (IBMX) and 0.2 mM indomethacin (Sigma). The cells were
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maintained for 28 days in the induction medium with medium changes every 48 h. The cells

were then stained with Oil Red O (Sigma). Briefly, the cells were first fixed with 4% paraformal-

dehyde for 10 min and then with 60% isopropanol for 5 min after rinsing with PBS. They were

then stained with Oil Red O for 5 min, rinsed with distilled water until the water was clear and

Table 1. Gene and primer sequences used in this study.

Gene Primer Sequence

OCT1 F: 5’- GCAACCCTGTTAGCTTGGTC -3’

R: 5’- CTCTCCTTTGCCCTCACAAC -3’

OCT2 F: 5’- AGGCCTCAGCGTTCTCTTTT -3’

R: 5’- TGCCAGTCCCTTCTCTCTTC -3’

OCT4A F: 5’- AGTGAGAGGCAACCTGGAGA -3’

R: 5’- GTGAAGTGAGGGCTCCCATA -3’

OCT4B F: 5’- TATGGGAGCCCTCACTTCAC -3’

R: 5’- CAAAAACCCTGGCACAAACT -3’

NANOG F: 5’- TGAACCTCAGCTACAAACAG -3’

R: 5’- TGGTGGTAGGAAGAGTAAAG-3’

SOX2 F: 5’- AGCTACAGCATGATGCAGGA -3’

R: 5’- GGTCATGGAGTTGTACTGCA -3’

FAP F: 5’- TCAACTGTGATGGCAAGAGCA -3’

R: 5’- TAGGAAGTGGGTCATGTGGGT -3’

FSP F: 5’- GATGAGCAACTTGGACAGCA -3’

R: 5’- CTTCCTGGGCTGCTTATCTG -3’

PPAR γ F: 5'-GGCTTCATGACAAGGGAGTTTC-3'

R: 5’- AACTCAAACTTGGGCTCCATAAAG -3’

FABP4 F: 5’- TTGACGAAGTCACTGCAGATGA -3’

R: 5’- CAGGACACCCCCATCTAAGGT -3’

PREF-1 F: 5’- TACGAGTGTCTGTGCAAGC -3’

R: 5’- ACACAAGAGATAGCGAACACC -3’

CEBP β F: 5’- ACTTCAGCCCGTACCTGGAG -3’

R: 5’- GAGAAGAGGTCGGAGAGGAAGT -3’

OCN F: 5’- CCCAGGCGCTACCTGTATCAA -3’

R: 5’- GGTCAGCCAACTCGTCACAGTC -3’

OPN F: 5’- ACAGCCACAAGCAGTCCAGATT -3’

R: 5’- TGCTCATTGCTCTCATCATTGG -3’

ALP F: 5’- GGACCATTCCCACGTCTTCAC -3’

R: 5’- CCTTGTAGCCAGGCCCATTG -3’

BSP F: 5’- CCAGAGGAAGCAATCACCAAA -3’

R: 5’- TTGAGAAAGCACAGGCCATTC -3’

COL2A1 F: 5’- GTGACAAAGGAGAGGCTGGA -3’

R: 5’- ACCTCTAGGGCCAGAAGGAC -3’

COMP F: 5’- GGAGATCGTGCAGACAATGA -3’

R: 5’- GAGCTGTCCTGGTAGCCAAA -3’

FMOD F: 5’- CAACCAGCTGCAGAAGATCC -3’

R: 5’- CAGAAGCTGCTGATGGAGAA -3’

SOX9 F: 5’- GTACCCGCACTTGCACAAC -3’

R: 5’- GTAATCCGGGTGGTCCTTCT -3’

GAPDH F: 5’- GCACCGTCAAGGCTGAGAAC -3’

R: 5’- GGATCTCGCTCCTGGAAGATG -3’

doi:10.1371/journal.pone.0127992.t001
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counter-stained with hematoxylin. The stained cells were visualized using a phase contrast mi-

croscope (Nikon Instruments, Tokyo, Japan).

For osteogenic differentiation, cells from the various compartments were seeded (10 x 104

cells/dish) into 6-well tissue culture dishes and incubated at 37°C in a 5% CO2 for 24 h to allow

attachment and the medium then switched to osteogenic medium contain DMEM supple-

mented 5% FBS, 0.17mM L-ascorbic-acid, 100nM dexamethasone, 1% penicillin/streptomycin

and 10mM β-glycerophosphate (Sigma) and the cells cultured for 28 days with fresh changes of

medium every 48 h. The cells were then subjected to Von Kossa staining. Briefly, the cells were

rinsed with PBS and fixed in 3.7% formaldehyde solution for 10 min at room temperature.

They were then washed with distilled water and stained in 1% silver nitrate solution under UV

light for 60 min. The cells were then washed again with distilled water, treated with 3% sodium

thiosulfate for 5 min and counter-stained with 1% Nuclear Fast Red (Sigma) for 5 min. The

stained cells were washed with distilled water and photographed under inverted phase contrast

optics (Nikon).

For chondrogenic differentiation, cells from the various compartments were seeded (10 x

104 cells/dish) into 6-well tissue culture dishes and incubated at 37°C in a 5% CO2 for 24 h to

allow attachment and the medium was then changed to chondrogenic medium contain

DMEM (4.5 g/l glucose) supplemented with 1% penicillin/streptomycin, 1% ITS, 0.17mM L-

ascorbic-acid, 100nM dexamethasone, 1mM sodium pyruvate, 0.35 mM proline and 10 ng/ml

TGFß-3 (Sigma) and the cells cultured for 28 days with fresh changes of medium every 48 h.

The cells were then stained with Alcian blue (Sigma). Briefly, the cells were disassociated with

trypsin (Invitrogen), washed with PBS (-) and cytospun directly on to glass slides using Cyotos-

pin (Thermo Scientific, Barrington, IL) at 500 rpm for 5 min. The cytospun slides were stained

with 0.5% Alcian Blue (Sigma, St. Louis, MO) for 30 min at room temperature and then rinsed

with tap water. The slides were counter-stained with 0.1% Nuclear Fast Red (Sigma) for 5 min

and photographed under inverted phase contrast optics (Nikon).

Degree of differentiation

The degree of adipocyte, osteogenic and chondrogenic differentiation for each compartment

was evaluated quantitatively using the protocol of Mennan et al [35]. Scores were attributed to

the number of cells stained and staining intensity in adipocyte, osteocyte and chondrocyte-

stained slides and then subjected to statistical analysis. The degree of differentiation was also

evaluated from gene expression levels for the adipocyte, osteocyte and chondrocyte genomic

markers using a scoring system ranging from 0 to 5 (+++++).

Statistical analysis

All cell counts and stemness assays were analyzed using one-way ANOVA with Bonferroni’s

multiple comparison post hoc analysis using the statistical package for Social Sciences (SPSS

13). The results were expressed as mean ± SEM from three different replicates for individual

assays and a value of p<0.05 was considered to be statistically significant. The degree of differ-

entiation into the adipocyte, osteocyte and chondrocyte lineages was calculated using the Krus-

kall-Wallace and Bonferri post hoc tests.

Results

Histology

In situ histological H & E cross-sections consistently showed clear-cut definite regions in all

five UCs. Starting from the outside, the compartments could be identified as the amnion (AM),
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subamnion (SA), Wharton’s jelly (WJ) (in which lied two arteries and a vein) around which

were thin perivascular areas (PV) (Fig 1Aa-d). The AM and SA were tightly attached to each

other requiring enzymatic manipulation and culture for cell isolation. The intervascular WJ re-

gion was a gelatinous matrix occupying the largest area and volume of the UC. Large numbers

of individual cells with a stellate morphology could be seen lying within the WJ matrix that

Fig 1. (A) (a-d) In situ H & E histological cross-sections of the human umbilical cord showing the various
regions [Wharton’s jelly (WJ), perivascular area (PV), subamnion (SA), amnion (AM)] from which MSCs were
derived. Note individual MSCs (hWJSCs) lying in gelatinous matrix of WJ. (B) Histogram showing
significantly greater numbers of MSCs (hWJSCs) in theWJ in primary culture compared to PV, SA, AM and
mixed cord cultures (MC) (*p<0.05).

doi:10.1371/journal.pone.0127992.g001
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could be isolated without enzymatic manipulation and culture. To prevent contamination with

WJ cells, PV cells could be separated from around the blood vessels only by enzymatic manipu-

lation after stripping out the blood vessels from the rest of the UC (Fig 1Aa-d). Since the WJ

cells were lying loosely within the WJ they were the easiest to isolate without enzymatic treat-

ment and culture.

Cell counts before and after culture

Approximately, 4.61 ± 0.57 x 106 fresh live cells without culture were isolated per cm of human

UC from the WJ. Such live cells could not be obtained from the other compartments (PV, SA,

AM, MC) without primary culture. In primary culture, cells fromWJ produced monolayers

faster with significantly greater cell numbers compared to the PV, SA, AM and MC (p<0.05)

(Fig 1B).

Cell morphology

MSCs derived from the various compartments showed different morphologies in primary cul-

ture. The hWJSCs grew as confluent monolayers with one type of stellate morphology only

(Fig 2A) while the cells from the PV, SA and AM showed short fibroblast-like cell morphology

in primary culture (Fig 2B–2D). Primary explants of MC cultures showed islands of cells with

two distinct types of morphology (epithelioid-like) (Fig 2Ea-b) and short fibroblast-like (Fig

2Ec-d).

Cell Proliferation (BrDU) and Cell viability (MTT)

The cells fromWJ showed significantly greater cell proliferation and viability rates compared

to cells from the PV, SA, AM and MC (p<0.05) at passages 3, 5 and 10 (Fig 3A and 3B). The

proliferation rate of cells fromWJ increased from 17.98 ± 2.11% to 48.97 ± 3.58% (P3),

20.33 ± 1.55% to 34.76 ± 2.76% (P5) and 20.15 ± 1.21% to 37.40 ± 1.89% (P10) while viability

rates increased from 18.76 ± 2.09% to 51.56 ± 4.17% (P3), 21.31 ± 1.16% to 44.27 ± 2.99% (P5)

and 18.39 ± 1.04% to 39.61 ± 3.01% (P10).

Telomerase analysis

qRT-PCR analysis showed similar levels of telomerase activity at passage 1 (P1) for cells from

the PV, SA, AM and MC but at passage 10 (P10) the levels remained high in cells fromWJ and

were significantly greater than those from PV, SA, AM and MC (p<0.05) (Fig 3C and 3D).

CDmarker analysis

The cell populations derived from all regions of the UC (WJ, PV, SA, AM and MC) were posi-

tive for the MSC-CD signature markers CD29, CD44, CD73, CD90, CD105 and HLA-ABC

(97.81 ± 0.37% to 99.50 ± 0.11%) and negative for CD14, CD19, CD34, CD45, CD117 and

HLA-DR ABC (3.73 ± 0.26% to 22.43 ± 0.46%) with no statistically significant differences in

the percentages between the markers for the various regions. However, the mean ± SEM fluo-

rescence intensities for CD29, CD44, CD73 and HLA-ABC were significantly greater in cells

fromWJ (627.91 ± 64.16 to 1643.19 ± 127.46) compared to cells from PV, SA, AM and MC

(251.19 ± 27.20 to 1343.17 ± 103.11) (Fig 4Aa-d).

CD24 and CD108 were reported to reliably discriminate between MSC and non-stem cell

mesenchymal cell cultures with significantly increased expression in MSCs [36]. In the present

study, the mean ± SEM fluorescence intensities for CD24 and CD108 were significantly greater
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Fig 2. (A-E) Morphology of MSCs derived fromWJ, PV, SA, AM and MC in primary culture. (A-D) The MSCs fromWJ showed one type of stellate
epithelioid-like morphology while those from the PV, SA and AM showed one type of short fibroblast-like morphology. (E) The MSCs fromMC cultures
showed cell islands with two types of morphology (a-b) epithelioid-like and (c-d) short fibroblast-like.

doi:10.1371/journal.pone.0127992.g002
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in cells in WJ (54.95 ± 8.16 to 71.46 ± 8.03) compared to the cells from PV, SA, AM and MC

(Fig 4Ba-b).

WJ and PV showed significantly greater percentages of cells that were positive for the typical

pericyte markers CD146 and CD271 (57.79 ± 6.47% to 97.21 ± 1.98%) with significantly

Fig 3. (A-D) Cell proliferation, viability and telomerase levels of MSCs derived fromWJ, PV, SA, AM andMC. (A) BrdU assays showed significantly
greater proliferation rates at passages 3, 5 and 10 in cells fromWJ compared to PV, SA, AM and MC (*p<0.05). (B)MTT assays showed significantly greater
cell viability at passages 3, 5 and 10 in cells fromWJ compared PV, SA, AM and MC (*p<0.05). (C) qRT-PCR analysis for telomerase showed similar levels
of telomerase activity with no significant differences (p>0.05) in early passages (P1) for cells derived fromWJ, PV, SA, AM and MC but (D) at late passages
(P10) the telomerase levels for WJ were significantly greater than PV, SA, AM and MC (*p<0.05).

doi:10.1371/journal.pone.0127992.g003
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Fig 4. (A-D) CDmarker analysis of cells derived fromWJ, PV, SA, AM and MC. (A) (a-d) and (B) (a-b) The mean fluorescence intensities were
significantly greater in cells fromWJ compared to PV, SA, AM and MC for CD29, CD44, CD73 and HLA-ABC and for CD24 and CD108 (*p<0.05). (C) The
percentages of positive cells (a,c) and mean fluorescence intensities (b,d) for CD146 and CD271 were significantly greater in cells fromWJ and PV
compared to SA, AM and MC (*p<0.05). (D) SA, AM and MC showed significantly greater percentages of positive cells (a,b,c) and mean fluorescence
intensities (d,e,f) for the fibroblast markers CD40, CD49d and CD140b comparedWJ and PV (*p<0.05).

doi:10.1371/journal.pone.0127992.g004
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greater mean ± SEM fluorescence intensities (143.09 ± 11.60 to 201.48 ± 13.27) compared to

SA, AM and MC (p<0.05) (Fig 4Ca-d).

CD49d and CD140b are markers that are not consistently expressed by MSCs [37–39]. The

SA, AM and MC cell populations showed significantly greater percentages of positive cells and

mean fluorescence intensities for these two markers compared to WJ and PV (p<0.05). CD40

has been reported to be significantly increased in non-stem MSC cultures compared with cul-

tures rich in MSCs [36] and numerous reports have identified CD40 expression amongst non-

stem cell contaminants such as endothelial cells, smooth muscle cells, fibroblasts and epithelial

cells [37–39]. In the present study, CD40+ cell populations were significantly greater for SA

(50.77%), AM (61.16%), and MC (70.22%) compared to WJ (26.12%) and PV (27.42%)

(p<0.05) (Fig 4Da-f).

Pluripotency and fibroblast markers

Immunohistochemical staining of cells from the various compartments of the UC were all

positive for the pluripotency markers SSEA-3, SSEA-4, Tra-1-60 and Tra-1-81 (Fig 5A–5D).

qRT-PCR analysis showed that the cells from all the compartments also expressed the pluri-

potency genes OCT1, OCT2, OCT4A, OCT4B, NANOG and SOX2 (Fig 6A–6F). However,

the expression levels for OCT1, OCT4A, OCT4B, NANOG and SOX2 pluripotent genes were

significantly lower for cells from the SA and AM compared to WJ (Fig 6A and 6C–6F). Also,

OCT4A and OCT4B genes were significantly lower for cells from the MC compared to WJ

(Fig 6C and 6D). The cells from the SA, AM and MC showed significantly high expression lev-

els of the fibroblast-related genes such as fibroblast activating protein (FAP) and fibroblast

stimulating protein (FSP) (0.86 fold to 100.64 fold) compared to cells from the WJ and PV

(Fig 6G and 6H).

Differentiation

The cells from all compartments readily differentiated into adipocyte, osteocyte and chondro-

cyte lineages (Fig 7). Adipocyte colonies stained with Oil Red O were similar in numbers and

there were no significant differences in staining intensity in cells between compartments (Fig

7A). However, the cells fromWJ exposed to osteocyte differentiation medium showed the

highest number of Von Kossa stained cells and greatest staining intensity of nodules compared

to cells from the PV, SA, AM and MC (Fig 7B). Cells from the WJ and PV exposed to the chon-

drocyte differentiation medium showed higher number of cells that positive for Alcian blue

staining compared to cells from SA, AM and MC (Fig 7C).

qRT-PCR analysis for adipocyte, osteocyte and chondrocyte genomic markers confirmed

that cells from all compartments readily differentiated into these three lineages. There were no

significant differences in the expression levels for the adipocyte marker genes CEBPβ, FABP4,

PPARγ and PREF-1 in cells between all compartments (Fig 8A). However, the expression levels

of the osteocyte marker genes osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase

(ALP) and bone sialoprotein (BSP) were significantly greater in cells fromWJ (2.93 to 5.39

fold) compared to PV, SA, AM and MC (P<0.05) (Fig 8B). Similarly, the expression levels of

the chondrocyte marker genes collagen type II (COL2A1), cartilage oligomeric matrix protein

(COMP), fibromodulin (FMOD) and sex determining region Y-box 9 (SOX 9) were signifi-

cantly greater in cells fromWJ (8.40 to 30.75 fold) compared to cells from PV, SA, AM and

MC (Fig 8C).
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Degree of differentiation

The comparative scores for the expression levels of the adipocyte, osteocyte and chondrocyte

genomic markers showed that the levels were significantly greater for cells in WJ, PV, SA, AM

and MC compared to their respective undifferentiated controls (P< 0.05) and there were no

Fig 5. (A-D) Confocal microscopic analysis of embryonic stem cell (ESC) markers in cells of in situ cross-sections and adherent monolayers.WJ,
PV, SA and AM were positive for SSEA-3, SSEA-4, Tra-1-60 and Tra-1-81.

doi:10.1371/journal.pone.0127992.g005
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Fig 6. (A-F) qRT-PCR for embryonic stem cell (ESC) pluripotent genomicmarkers in cells derived from theWJ, PV, SA, AM and MC. Cells derived
fromWJ expressed significantly greater levels of the pluripotency genes OCT1, OCT4A, OCT4B, NANOG and SOX2 compared to cells from SA, AM and
MC. (*p<0.05). (G-H) Cells from SA, AM and MC showed significantly greater levels of expression of the fibroblast-related genes FAP and FSP compared to
WJ and PV (*p<0.05).

doi:10.1371/journal.pone.0127992.g006
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Fig 7. (A-C) Differentiation of cells fromWJ, PV, SA, AM andMC into adipogenic, osteogenic and chondrogenic lineages.Cells fromWJ, PV, SA, AM
and MC stained (A)Oil Red O positive for adipocytes, (B) Von Kossa positive for osteocytes and (C) Alcian blue positive for chondrocytes when exposed to
their respective differentiation media for each of the lineages. Adipocyte colonies stained with Oil Red O were similar in number with no differences in staining
intensity betweenWJ, PV, SA, AM and MC. However, Von Kossa and Alcian blue stained cells for osteocytes and chondrocytes were greater in numbers
and staining intensities in WJ compared to PV, SA, AM and MC.

doi:10.1371/journal.pone.0127992.g007
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Fig 8. (A-C) Expression levels of adipogenic, osteogenic and chodrogenic genomicmarkers in
differentiatedWJ, PV, SA, AM andMC cells. (A) The expression levels of the adipogenic-related genes
CEBPβ, FABP4, PPARγ and PREF1 were increased for WJ, PV, SA, AM and MC compared to their
respective controls with no significant differences between them. (B) The expression levels of the
osteogenic-related genes osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP) and bone
sialoprotein (BSP) were significantly greater for WJ compared to PV, SA, AM and MC (*p<0.05). (C) The
expression levels of the chondrogenic-related genes collagen type II (COL2A1), cartilage oligomeric matrix

TheWharton's Jelly Is an Ideal Source of Stem Cells

PLOS ONE | DOI:10.1371/journal.pone.0127992 June 10, 2015 17 / 25



significant differences in adipocyte genomic marker levels between WJ, PV, SA, AM and MC

(P> 0.05) (Table 2). However, the expression levels of the osteocyte and chondrocyte genomic

markers were significantly greater for cells fromWJ compared to cells from PV (P<0.05), SA,

AM and MC (P<0.01) (Table 2).

Discussion

The cells in the SA, AM and PV compartments were tightly attached to each other by an ECM.

As such, the SA, AM and PV compartments required manipulation such as enzymatic treat-

ment and prolonged serial cell culture to generate adequate cell numbers for application. The

PV region on the other hand produced low cell numbers as it was a small area surrounding the

blood vessels. Furthermore, since the SA and AM tightly adhere to each other, any protocol to

isolate stem cell populations from each of these compartments runs the risk of cell contamina-

tion from the other compartments. In fact, Jeschke et al [20] reported that they had to use a

razor blade to separate the SA from AM for their isolation of SA or cord lining MSCs. It has

also been reported that the derivation of MSCs from the SA requires several hours as the um-

bilical cord pieces need to be dissected into small pieces and incubated for 10 to 14 days to be

established in culture [7,27,40]. It was also reported that there was the possibility of the cells

from SA mixing up with MSCs of the WJ as the two regions were in close proximity and it was

thus difficult to exclude cell cross-contamination [20]. Thus the major disadvantages of cells

from the SA are that derivation is time-consuming taking at least two working days to process

the sample, the tissue often floats in the medium and the resulting cell numbers are low and

may not be suitable for rapid and large scale propagation [20,41]. Besides the time taken and

labor-intensive nature of isolating MSCs from the SA, AM, PV and MC their manipulation via

prolonged serial culture runs the risk of culture-induced genetic changes [42]. More recently,

another group re-emphasized that in vitro expansion causes dramatic changes in MSC pheno-

type which has very significant implications for the development of effective therapies [43].

They suggested a ‘one-step’MSC therapy and discussed the potential cellular and clinical bene-

fits of avoiding too much in vitro culture.

In contrast, large numbers of MSCs could be isolated from the WJ with minimal manipula-

tion by simple pipetting in suspension without the need for culture. The results of the present

study showed that the WJ compartment of the human UC was the largest in terms of volume

and surface area and contained large numbers of fresh live MSCs (4.61± 0.57 x 106/cm) that

were of one homogeneous morphological cell type. A normal term UC of 50–60 cm could thus

generate large numbers of cells from the WJ that would require only short term culture to gen-

erate enough cell numbers for clinical application because of their proliferative nature and

short population doubling time thus eliminating the risk of culture-manipulated genetic

changes and microbial contamination. Furthermore, their isolation was simple, fast and easy.

protein (COMP), fibromodulin (FMOD) and sex determining region Y-box 9 (SOX 9) were significantly greater
for WJ compared to PV, SA, AM and MC (*p<0.01).

doi:10.1371/journal.pone.0127992.g008

Table 2. Scoring of adipogenic, osteogenic and chondrogenic differentiation of MSCs derived from
various compartments of the UC.

WJ PV SA AM MC

Adipogenic differentiation ++ ++ ++ ++ ++

Osteogenic differentiation +++++ +++ ++ ++ ++

Chondrogenic differentiation +++++ +++ ++ ++ ++

doi:10.1371/journal.pone.0127992.t002
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In the present study there were no significant differences in the common MSC signature

markers (CD29, CD44, CD73, CD90, CD105 and HLA-ABC) between the cells of all compart-

ments (WJ, PV, SA, AM and MC). It has been reported however that the CD24, CD108 and

CD40 markers discriminate between MSCs and non-stem cell mesenchymal cell cultures with

the increased expression of CD24 and CD108 confirming the presence of MSCs and increased

expression of CD40 confirming non-MSC contaminants [36]. The MSCs from the WJ in the

present study showed significantly high expression levels of CD24 and CD108 together with

very low expression of the fibroblast-specific markers (FAP and FSP) thus confirming that the

WJ possessed greater populations of true MSCs.

Increased CD40 expression is typically seen in endothelial cells, smooth muscle cells, fibro-

blasts and epithelial cells. The cells in the WJ had much lesser CD40+ contaminants (26.12%-

27.42%) compared to PV, SA, AM and MC (50.77%-70.22%) further confirming that larger

numbers of pure MSC populations were available from the WJ. These percentages of non-MSC

contaminants in the present study are consistent with the reports of other workers who showed

through flow cytometry studies that only 20% of the umbilical cord matrix cell populations are

bona fide MSCs while the rest are stromal cells or normal fibroblasts [44–45]. The results of

the present study also showed that the dermal fibroblast marker CD40 (co-stimulatory pro-

tein), CD49d (an integrin involved in the homing of cells to an inflammatory site) and CD140b

(cell surface receptors tyrosine kinase) were highly expressed in AM, SA and MC cultures sug-

gesting that the stem cell populations in these regions may be mixed with stromal cells or nor-

mal fibroblasts [44–45].

MSCs have been isolated from regions around the umbilical blood vessels and referred to as

perivascular stem cells [3]. However, in situ histologically stained cross-sections of the human

UC did not show an obvious demarcation between PV and WJ. In fact, it has been suggested

that all cells from the PV are derived from the WJ region [24]. This may be why some of the re-

sults in the present study for the PV were similar to those for WJ. Isolation of cells from the PV

compartment has been undertaken because it has been shown that pericytes which belong to

the family of MSCs lie around blood vessels [46]. The results of the present study showed that

the typical pericyte markers CD146 and CD271 [47] were expressed at significantly higher lev-

els in PV and WJ compared to all other regions. Since there is no clear demarcation between

the PV andWJ regions, the intervascular UC matrix may actually encompass both PV andWJ

areas thus suggesting that the WJ may contain these pericytes making them the richest region

in MSC properties. The major limitations of the PV compartment are that the few cells that

could be isolated require long term expansion and may be contaminated with cells from the

blood vessel wall on one side and the WJ on the other.

The results of the present study also showed that some stem cell characteristics were differ-

ent between compartments of the UC with the WJ region being the richest in stem-cell proper-

ties. Even though cells from the WJ had high expression levels of the pluripotent markers they

did not produce teratomas when injected into immunodeficient SCID mice compared to em-

bryonic (ESCs) or induced pluripotent stem cells (iPSCs) [48–49]. Since the UC (collected 9

months after fertilization) lies in between the 5-day embryo (blastocyst) and adult on the

human developmental map, the stem cells isolated from the UC probably start to lose their em-

bryonic pluripotency tumorigenic characteristics and start to acquire multipotent non-tumori-

genic MSC characteristics with progressive human development. Interestingly, the telomerase

levels of cells from the WJ remained high throughout serial culture compared to all other com-

partments suggesting that they retain their primitive characteristics in culture for long periods

of time. This feature would help cells from the WJ to differentiate into specific lineages more

easily during cell-based therapy and allow higher reprogramming efficiency to the embryonic

state because of an immature phenotype [50–52].
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Although the MSCs derived from each compartment could be differentiated into osteocytes,

chondrocytes and adipocytes, there were differences in the degree of differentiation into these

lineages. Cells from the WJ showed greater osteogenic and chondrogenic differentiation poten-

tial compared to all other compartments within the UC. Several groups have reported that cells

from the WJ could also differentiate very efficiently into the neuronal phenotype [53–55].

Some groups for the sake of simplicity dice pieces of UC and grow them as explants (mixed

cord, MC) rather than derive cells from individual compartments of the UC [28–29,56–60].

The results of the present study showed that the cell populations from such MC cultures were

heterogeneous with mixed islands of cells of different morphologies (epithelioid or fibroblast-

like) probably originating from the different compartments. Such heterogeneous cell popula-

tions are not ideal for studies or for clinical application as it is not known what influences one

morphological cell type has on the other. Majore et al [61] reported that MSCs derived from

MC cultures were incapable of osteogenic differentiation even after adding potent osteo-in-

ductive substances such as 1.25-dihydroxy-vitamin D3. The present study confirmed the poor

osteogenic and chondrogenic differentiation potential for MSCs derived from MC cultures.

Thus, MSCs derived fromMC cultures would not be ideal for cell-based therapies due to their

heterogeneity, genomic alterations after prolonged manipulation in culture and competition

in differentiation along a desired lineage as the cells originate from the various compartments

of the UC.

Several groups have also reported other unique advantages of cells from the WJ such as

their differentiation into hepatocytes [62], pancreatic-like cells [63], endothelial cells [64], skel-

etal muscle [65], hyoimmunogenic tolerance to rejection [66–68], non-tumorigenecity [48]

and paradoxical anticancer properties [69–78]. It has been hypothesized that cells from the WJ

are primitive MSCs that have been trapped in the gelatinous connective tissue matrix of the WJ

during migration to and from the placenta during early embryogenesis [79]. The actual role of

these cells from the WJ during embryonic and fetal development is not clear although Yang

and Chao [80] postulated that their tumoricidal properties may suggest that they act as a natu-

ral defence against the migration of cancer cells from the mother to the fetus through the UC

because the incidence of malignant cancer cells in the fetus is significantly low in pregnant

mothers suffering from ovarian carcinoma, mammary carcinoma, sarcomas or choriocarcino-

mas of the placenta [80].

Taken together, it appears that MSCs from the WJ are more superior than those from the

PV, SA, AM and MC in terms of clinical utility and research value because (i) their isolation is

simple, quick and easy to standardize, (i) they have lesser non-stem cell contaminants (iii) they

are rich in stemness characteristics, (iv) they can be generated in large numbers with minimal

manipulation, (v) they are proliferative and (vi) have broad and efficient differentiation poten-

tial. They will thus be stable and attractive candidates for research and future cell-based thera-

pies when derived, propagated and characterized correctly. Our results show that when

isolating MSCs from the UC, the WJ should be the preferred compartment, and a standardized

method of derivation must be used so as to make meaningful comparisons of data between

research groups.
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