# Treatment and Long-Term Follow-Up of Juveniles with Idiopathic Scoliosis Using ScoliBrace<sup>®</sup>. A Case Series.

Rosemary Mirenzi <sup>1</sup>, Nora-Lee Doueihi <sup>1</sup>, Juan du Plessis <sup>1</sup>, Jeb McAviney <sup>1</sup>

1 ScoliCare Australia, Kogarah, NSW, 2217, Australia



## BACKGROUND

Juvenile Idiopathic Scoliosis (JIS) is characterised by abnormal curvature of the spine in children between the ages of 3 and 9. JIS is a highly progressive condition exacerbated by growth. JIS greater than 30 degrees has been shown to increase rapidly and presents a 100% prognosis for surgery, emphasising the need for active treatment and management. This case series investigates the use of ScoliBrace as a non-surgical treatment approach of Juveniles with idiopathic scoliosis.

#### **OBJECTIVE**

To report the long term outcomes of the use of ScoliBrace<sup>®</sup> in five Juvenile patients with Idiopathic Scoliosis classified as double or triple curves, with a primary right thoracic curve.

### **METHOD**

A cohort of 5 patients with JIS, aged 5-9, were prescribed a full time (20-23 hours per day) ScoliBrace® for the treatment of JIS. Every ScoliBrace was custom made for the individual.

Bracing hours were adjusted based on individual patient findings regarding growth status.

Patients were braced for 3-8.5 years (average 6.6 years), with follow-up appointments on a 3-monthly basis. Patients were reviewed for a minimum of 5 years (5-10 year range).

Yearly out-of-brace X-rays, postural images and Angle of Trunk Rotation (ATR) measurements have been used for this case series.

#### RESULTS

This case series showed successful reduction of primary Cobb angles and ATR (Table 1) in all patients.

- Secondary and tertiary lumbar curves reduced from an average of 22.6 degrees to 6 degrees (average 73% reduction).
- Secondary and tertiary upper thoracic curves were initially present in 2 patients. These curves reduced from an average of 27 to 23 degrees (average 15% reduction).

|  | Case    | Initial<br>Cobb Angle | Post Cobb<br>Angle | Degree<br>Reduction | %<br>Reduction | ATR on<br>Start | ATR on<br>End | %<br>Reduction | Years of Follow-Up* | Years of<br>Bracing |
|--|---------|-----------------------|--------------------|---------------------|----------------|-----------------|---------------|----------------|---------------------|---------------------|
|  | 1       | 30                    | 6                  | 24                  | 80%            | 10              | 5             | 50%            | 5                   | 3.1                 |
|  | 2       | 37                    | 19                 | 18                  | 49%            | 17              | 5             | 71%            | 8                   | 8                   |
|  | 3       | 31                    | 20                 | 11                  | 35%            | 15              | 8             | 47%            | 10                  | 8.5                 |
|  | 4       | 42                    | 4                  | 38                  | 90%            | 17              | 6             | 65%            | 10                  | 7.5                 |
|  | 5       | 24                    | 22                 | 2                   | 8%             | 10              | 7             | 30%            | 7                   | 6                   |
|  | Average | 32.8                  | 14.2               | 18.6                | 52.4%          | 13.8            | 6.2           | 52.6%          | 8                   | 6.62                |

Table 1: Cobb Angles and ATR Measurements Pre and Post Treatment.

\*Years of follow-up is inclusive of years of bracing

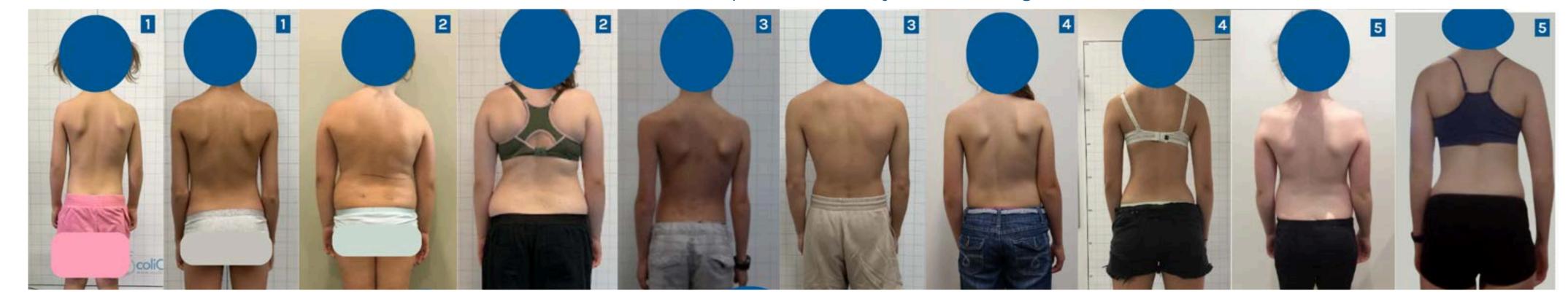



Figure 1: Pre (left) and post (right) posture photos of all five case studies




Figure 2 : Pre (left) and post (right) X-ray images of all five case studies